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Monitoring cetaceans in the North Pacific: analysis of 
retrospective SOSUS data and acoustic detection on the 

Northern Edge Range 
 

Final report for N00244-08-1-0036 
 

Kathleen Stafford, Applied Physics Laboratory, University of Washington 
 

 
 U.S. environmental laws, including the Endangered Species Act, the Marine 
Mammal Protection Act, and the National Environmental Policy Act, require the Navy to 
conduct training operations so as to minimize impacts on marine mammals and to 
mitigate any adverse impacts those operations might have.  The Navy maintains 
numerous offshore ranges in the North Pacific wherein readiness training operations are 
regularly conducted.  One of these, the Northern Edge Range (NER), is an area in the 
northern Gulf of Alaska having boundaries that can change depending upon the goals of 
the annual exercise.  Recent litigation in southern California and Hawaii severely 
curtailed these operations, and the U.S. Supreme Court is due to rule on the use of mid-
frequency SONAR off California (Weiss 2008).   
 Over the past decade, the Navy (CNO N45 and ONR) in cooperation with the 
National Oceanic and Atmospheric Administration (NOAA) has increasingly relied on 
acoustic detection and tracking methods for marine mammal monitoring and mitigation.  
The reliance on acoustic tools is due in part to the development of the necessary hardware 
and software, and in part to the capability of passive acoustics to detect animals 
underwater, to work at night and in poor weather, and to record the relevant signals and 
post-process them if necessary.  In the North Pacific, much of what we know about large 
whale seasonal occurrence comes from “dual use” of Sound Surveillance System arrays 
(Nishimura and Conlon 1994; Moore et al. 1998; Watkins et al. 2000b; Stafford et al. 
2001).  While the SOSUS provides a broad basin-scale assessment of large whale 
seasonal occurrence, it cannot provide detail at the regional level, and, due to the 
placement of SOSUS assets, cannot provide useful information for the northern Gulf of 
Alaska.   
 This report presents data from long-term acoustic observations (15 years) of basin-
wide data, as well as a very short-term, nearshore acoustic deployment.   
 
 

Short-term deployment in and near the Northern Edge Range 
 
 The northern Gulf of Alaska is home to many species of marine mammal including 
endangered blue (Balaenoptera musculus), fin (B. physalus), humpback (Megaptera 
noveaengliae), sei (B. borealis), right (Eubalaena japonica) and sperm (Physeter 
macrocephalus) whales.  Additionally, numerous odontocete species, including several 
species of beaked whale, are known to occur here.  The Northern Edge training range 
encompasses almost 150,000 km2 and includes nearshore and deep water habitats (Figure 
1).   
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 Although the footprint for the Northern Edge training area is somewhat mobile, 
operations are generally conducted south of the Kenai Peninsula (Figure 1).  From the 
EA/OEA for the 2004 Fleet Training Exercise (Anonymous 2004), the Purpose and Need 
for training in this area is as follows: 
 

The increasingly diverse nature of military operations, both in peacetime 
and in war, demands that periodic training exercises be conducted to 
ensure readiness and preparedness to achieve the mission.  The purpose of 
this exercise is to provide training and assessment procedures and 
coordination with a goal of improving readiness for actual operations.  
The Action Proponent needs to use NORTHERN EDGE 2004 to exercise 
and train to its mission.  The Gulf of Alaska offers geographical 
characteristics that support training objectives established by PACOM.   

 
To determine seasonal occurrence of both baleen (low-frequency) and toothed 

(high frequency) whales in the Northern Edge training area and during the time of year 
when the exercises traditionally take place, passive acoustic recording instruments were 
deployed in the northern Gulf of Alaska.  The original intent of the deployment was to 
compare acoustic data acquired before, during, and after these exercises to document 
vocal species present in the region over the time frame monitored.  However, as in past 
years, offshore exercises as part of the biennial Northern Edge operations were cancelled 
shortly before the marine mammal monitoring instrumentation was to be deployed, which 
made one of the main goals of this deployment – a pre-, during-, and post-exercise 
comparison of whale occurrence-- impossible.  We therefore focused on documenting 
which species (or families from the C-POD data) were vocally active on the recordings 
from 4 April 2010 to 15 May 2010.   
 

 

Figure 1.  Northern Edge region shown as polygon in the northeastern Gulf of 
Alaska.  Proposed locations of recording packages are shown as dots.   
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 Two types of instruments were deployed on moorings to monitor the acoustic 
environment of the nearshore Gulf of Alaska in the NER.  The first, for baleen whales, 
consisted of a recorder developed for use in Acoustic Sea Gliders (ASG) (Moore et al. 
2007) that sampled at 5 kHz with a low-pass at 1.2 kHz and C-PODs (Trengenza 2006).  
The advantage of C-PODS over simple recorders is that they sample continuously but do 
not log time series, so the recording duration of a single instrument is much greater than 
that of a recorder.  Because only detections are logged, there is no need to subsample or 
set a duty cycle for monitoring for odontocetes such as beaked whales.  The disadvantage 
of this system is that a priori knowledge of the species-specific frequency bands of 
interest is required.   
 Three moorings, each consisting of an anchor, ORE coastal acoustic release 
transponder (CART), a C-POD and hydrophone package as well as flotation, were 
assembled to be deployed in the NER, with two near the shelf break to listen for beaked 
whales and the third on the inner shelf to monitor near-shore animals such as killer and 
humpback whales.  All three moorings were deployed from the M/V Dora out of Seward, 
Alaska, on 3-4 April 2010.  Right before the scheduled deployment, it was learned that 
the U.S. Navy would not be participating in the 2010 NE exercise.  This, combined with a 
truly miserable offshore forecast for the northern Gulf, caused us to move the deployment 
locations closer to shore such that two were in the bounds of the NER and one (a control) 
was inshore of the NER (Figure 2).   
 

 

Figure 2.  Actual locations of instruments deployed in the Gulf of Alaska.  
Instruments were moved closer to shore due to poor weather 
conditions that precluded deployments near the shelf break.   
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Recovery 
  
 All three moorings were safely recovered on 15-16 May 2010 from the R/V 
Pandalus in horrific weather conditions.   
 
 One of the three low-frequency recorders had a corrupt CF card upon retrieval.  
No baleen whale calls were detected on the other two low-frequency recorders during the 
deployment period.  Each of these instruments had their gain set very low so distant 
animals, if they were vocal, were unlikely to be detected.  As there was no co-incident 
visual survey, it is unknown whether whales were present in the area, although a few fin 
whales were seen near NE2 during the deployment cruise.   
 Of the three C-Pods deployed, one (NE3) had problems due to a software glitch 
that caused it to freeze up 90 minutes after deployment.  The other two logged for the 
entire duration of the deployment.  Figures 3-10 show the number of click trains detected 
by day by porpoises, dolphin species, boat sonars (echosounders) and unknown sources.   
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Figure 3.  Number of high and moderate quality porpoise click train detections from 
NE 1.   
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Figure 4.  Number of high and moderate quality dolphin click train detections from  
                  NE1.   
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Figure 5.  Click trains recorded at NE1 (high and moderate quality combined) that 
resemble echosounders from ships.   
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Figure 6.  Click trains (high and moderate combined) recorded at NE1 that are 
similar to known trains from dolphins or porpoises, but for which 
identification is not known.   
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Figure 7.  Number of high and moderate quality porpoise click train detections from 
NE 2.   
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Figure 8.  Number of high and moderate quality dolphin click train detections from 
NE 2.   
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Figure 9.  Click trains recorded at NE2 (high and moderate quality combined) that 
resemble echosounders from ships.   
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Figure 10.  Click trains (high and moderate combined) recorded at NE2 that are 
similar to known trains from dolphins or porpoises, but for which 
identification is not known.   

 
 
 A combined visual-acoustic survey was conducted by the National Marine 
Mammal Laboratory in April 2009 to provide estimates of abundance (when possible) or 
document the presence of marine mammals in the Northern Edge Range (Rone et al. 
2010).  During that survey, 11 different species of marine mammal were seen, but only 
sperm and killer whales were heard.  As with that study, we did not detect any baleen 
whales on the two low-frequency recorders that functioned.  Although many baleen 
whale species produce sounds year-round, the repetitive “songs” of large whales are most 
often recorded in winter months, even at high latitudes, and decrease in spring (Clark and 
Clapham 2004, Širović et al. 2004, Stafford et al. 2007).  It is not, therefore, that 
surprising that we did not detect the sounds of baleen whales during our short-term, 
spring time deployment.   
 The two C-PODs that functioned correctly were both relatively nearshore, with 
NE1 closer to shore and outside of the designated NER area.  NE2, while also in shallow 
water, was in the NER area.  Both of these instruments had 10s to 100s of porpoise-like 
click trains detected daily.  Dolphin-like click train detections were an order of magnitude 
lower, but were detected nearly every day.  In the NER, we expect that the porpoise 
signals came primarily from harbor (Phocoena phocoena) and Dall’s porpoise 
(Phocoenoides dalli), both of which are common to the region.  The dolphin signals 
could have come from Pacific white-sided dolphins (Lagenorhynchus obliquidens) and 
killer whales (Orcinus orca), which are the most common delphinids in the area.  Clearly 
visual ground-truthing of species present is important to determine which of these (or 
other) species were the source of the dolphin-like click trains.  Nevertheless, odontocete 
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cetaceans were detected daily within, and just shoreward of, the NER in April and May 
2010.   

Our C-PODs were not far enough offshore to detect the signals of beaked whales; 
but neither did the 2009 visual survey see any.  There were, however, many click trains 
detected that may belong to as-yet-unidentified species.  The C-POD software is based on 
the time and frequency characteristics of known species, such as harbor porpoise and 
beluga whales, and is constantly being adapted to identify other odontocetes.  Although 
our instruments were in much shallower water than that in which beaked whales are 
found, these instruments may prove useful in the future for the detection of beaked 
whales in remote areas.   
 The NER has been little used in the past decade for active Navy exercises, unlike 
ranges off southern California, Hawaii and the Bahamas.  Because this area is relatively 
remote and subject to much worse weather, there are few recent studies of the seasonal 
occurrence of marine mammals in this area.  In order to obtain estimates of number of 
species and their residence time in both the near and off shore Gulf of Alaska, it is clear 
that a combination of acoustic and visual data are needed to better assess the suite of 
species (vocally active and silent) in a region that may be used as an offshore training 
range for Naval exercises.   
 
 

Long-term monitoring of blue and fin whale acoustic signals from the 
North Pacific 1994-2009: comparison of data from spectra and analyst-

derived identifications 
 

Blue (Balaenoptera musculus) and fin (B. physalus) whales are highly mobile, 
pelagic whale species that occupy all ocean basins.  As the largest whales in the North 
Pacific Ocean, they were also preferred targets for commercial whalers and thus two of 
the species to be most depleted by modern whaling methods (Perry et al. 1999, Guénette 
and Salter 2005).  Both species have been protected globally for over 25 years (blue 
whales since 1966 and fin whales since 1981).   

One means of studying blue and fin whales is via acoustic sampling from deep 
offshore waters of the North Pacific Ocean (e.g., Watkins et al. 2000a).  Vocalizations of 
both species have the lowest frequency of all cetaceans and are produced in roughly the 
same bandwidth, 15-30 Hz fundamental frequencies (Mellinger et al. 2007).  Fortunately, 
vocalizations are readily distinguishable between fin (Watkins 1981, Watkins et al. 1987) 
and blue whales (Thompson et al. 1996, Rivers 1997), as well as among different 
populations of blue whales (Stafford et al. 2001, McDonald et al. 2006).  Consequently, 
vocalizations can be used to investigate the seasonal occurrence of these two species.   

Blue whales in the eastern North Pacific are the best studied of all extant populations 
of this species.  Visual surveys (Barlow 1995, Barlow and Forney 2007, Calambokidis 
and Barlow 2004) have provided detailed accounts of blue whale distribution and 
abundance, while passive acoustic and satellite telemetry data have documented seasonal 
migrations from California to the Costa Rica Dome (Mate et al. 1999, Stafford et al. 
1999).  Numerous acoustic studies (McDonald et al. 1995, Rivers 1997, Stafford 2003) 
have detailed the sounds of the eastern North Pacific population.  Western Pacific blue 
whale calls have been less well studied: the first visual-acoustic confirmation that blue 



 

11 
 

whales made these sounds came only in 2004 (Rankin et al. 2006), although these calls 
were attributed to blue whales much earlier (Thompson and Friedl 1982, Stafford et al. 
2001).  The western North Pacific call type has been recorded from the Gulf of Alaska 
westward to the Aleutian Islands and south to Hawaii (Northrup et al. 1971, Thompson 
and Friedl 1982, Stafford et al. 2001, Stafford 2003).  Eastern Pacific blue whale B-calls 
generally sweep from 18-16 Hz during the time frame of this study, while western Pacific 
blue whale calls cover 20-18 Hz.   

Broader basin-wide acoustic studies of blue whales describing seasonality and 
geographic distribution from the Aleutian Islands and Gulf of Alaska to California were 
provided by Stafford et al. (1999, 2001), Watkins et al. (2000a, 2000b, 2001) and 
Moore et al. (2002) using the U.S. Navy Sound Surveillance System (SOSUS) and 
other autonomous hydrophones deployed over large regions of the North Pacific Ocean.   

 Fin whales in the North Pacific produce low-frequency pulses centered at 
roughly 20 Hz (Watkins 1981).  Pulses are produced in long-patterned sequences of 
singlets or doublets that are thought to be a reproductive display (Watkins et al. 1987), or 
as shorter, more variable pulses that have been associated with both feeding and 
transiting behavior (Watkins 1981, McDonald et al. 1995).  Fin whale pulses in the North 
Pacific, while having most energy around 20 Hz, span the range of 15-40 Hz, with 
“regular” pulses covering 15-25 Hz (Watkins 1981).   

Although recent advances in recording technology and automatic detection of 
whale calls have greatly expanded our understanding of the behavioral ecology of sound 
production by large whales (e.g., Mellinger and Clark 1997, 2000, Oleson et al. 2007a), 
ocean basin-scale monitoring began with Navy analysts painstakingly visually examining 
spectrograms at Naval facilities (Nishimura and Conlon 1994).  In both the Atlantic and 
Pacific Oceans the dual use of these systems has provided information on the occurrence 
of vocal large whales from times and locations that would otherwise have been nearly 
impossible to monitor  (i.e., Clark 1995, Moore et al. 1998, Watkins et al. 2000a, 2000b, 
Mellinger and Clark 2003, Stafford et al. 2001, 2009).  From 1997-2002, Naval analysts 
examined subsets of spectrograms from SOSUS arrays.  That progarm ended in 2002, but 
spectral data have been collected since 1995 by the North Pacific Acoustic Laboratory 
and housed at the Applied Physics Laboratory of the University of Washington.  There 
have been two published studies using spectral data to study large whales in the North 
Pacific.  The first of these (Curtis et al. 1999) did not distinguish between blue and fin 
whales, while the second (Burtenshaw et al. 2004) used the 3rd harmonic of blue whale 
B-calls to study that species in the eastern North Pacific.   

Here we compare Navy-analyst dervied detections of blue and fin whales with 
spectral data to determine if there is a reliable way to separate the two species in the 
spectral data.   
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 SOSUS data were used in two ways to examine long-term occurrence of blue and 
fin whale calls in the North Pacific.  Raw acoustic data from these arrays and locations of 
most of the hydrophones remain classified.  Fictive locations are shown in Figure 11, 
which is reproduced from Figure 1 of Curtis et al. (1999).   
 
 

 

Figure 11.  Figure reproduced from Curtis et al. (1999, JASA).  
Map of FICTIVE instrument locations.   

 
 
 The methods used by the Navy analysts have been previously described (Watkins 
et al. 2000a, 2000b and Stafford et al. 2009).  Briefly, calls of fin and blue whales were 
monitored regularly following a consistent schedule of 16 hours on each of two, usually 
consecutive, days every week, centered on 1200 GMT, spanning both daylight and 
darkness in each region, beginning in January 1996 and ending in December 2002.  Data 
were analyzed in terms of whale call “detections” collected over the 16 consecutive hours 
twice a week.  A call detection was defined as a call from at least one whale from the 
same area and direction for as long as the call(s) continued without an interruption greater 
than 30 minutes.  Call detections by month were summed.   
 Likewise, the spectral data processing was described by Curtis et al. (1999).  
Those data consist of a 170-second recording every 5 minutes that is binned into 1-Hz 
samples, producing twelve 2-500 Hz spectral plots per hour.  Because the original 
acoustic data from which the spectra were derived are discarded, only the relative level 
(dB) per 1 Hz bin is available.  It is not possible to distinguish individual calls.  Daily 
spectrograms are then produced to provide long-term looks at the contribution of whale 
sounds to overall ambient noise levels in the North Pacific.  Data for 15-25 Hz were then 
extracted to better examine the blue and fin whale acoustic data.  16-18 Hz data were 
used for northeast Pacific blue whales, 18-20 Hz for northwest Pacific blue whales, and 
20-25 Hz for fin whales (with the understanding that some contribution in the “blue 
whale” frequencies may be from fin whales).  To match the temporal scale of the analyst 
data described above, the values from the spectra were averaged by month for four arrays 
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from different regions of the North Pacific.  Site K is dominated by western Pacific blue 
whales (that also occur at site J), while fin whales were most common at sites J, G and O.  
Eastern Pacific blue whales are found at sites G and O, but at relatively low levels 
(Watkins et al. 2001).   
 Site K is in the northwestern Pacific, where western blue whales are the 
predominant signal detected by analysts (Watkins et al. 2001, Stafford et al. 2009).  Both 
blue (Figure 13) and fin (Figure 14) whales show the same seasonal pattern as the 
spectral data, although the peak 18-20 Hz spectra lag the analyst detections by a month.  
Fin whale spectra for 16-25 Hz show a similar pattern not only to analyst detections but 
also to blue whale spectra, although these precede fin whale spectra by about 1 month.   
 
 

 

Figure 12.  Long-term spectrogram of 10-50 Hz from site K.  White spaces are 
missing data.  The smears of red show the seasonal contribution of blue 
and fin whales to ambient noise levels.   
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Figure 13.  Western Pacific blue whale detections (solid blue line) and relative sound 
levels for 18-20 Hz from spectra derived from Figure 12 for site K.   
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Figure 14.  Fin whale detections (solid red line) and relative sound levels for 16-25 
Hz from spectra derived from Figure 12 for site K.   

 

 

 Site J is in the north central Pacific and has many more fin whales detected than 
blue whales (Watkins et al. 2001, Stafford et al. 2009).  Western Pacific blue whale 
detections (18-20 Hz) have the best correspondence with the spectra data from these 
frequencies (Figure 16), although the peak detections lag by about a month.  The fin 
whale correspondence is less clean-cut.  Although the time series of the two data sources 
show similar patterns, the analyst detections usually precede the spectra (Figure 17).   
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Figure 15.  Long-term spectrogram of 10-50 Hz from site J.  White spaces are 
missing data.  The smears of red show the seasonal contribution of 
blue and fin whales to ambient noise levels.   
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Figure 16.  Western Pacific blue whale detections (solid blue line) and relative sound 
levels for 18-20 Hz from spectra derived from Figure 15 for site J.   
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Figure 17.  Fin whale detections (solid red line) and relative sound levels for 15-17 
Hz and 21-25 Hz from spectra derived from Figure 15 for site J.   

 
 

Site G is in the northern NE Pacific.  For blue whales the analyst detections 
always match the spectra data; but there are other, uncorrelated peaks in 16-18 Hz for this 
site that are not matched by analyst detections (Figure 19).  For fin whales the 
contributions from 24 and 25 Hz match the best for this data set in terms of the “shapes” 
of the analyst detections and the spectral levels (Figure 20).   
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Figure 18.  Long-term spectrogram of 10-50 Hz from site G.  White spaces are 
missing data.  The smears of red show the seasonal contribution of blue 
and fin whales to ambient noise levels.  This instrument is in the NE 
Pacific, but shows no evidence of 3rd harmonics of blue whale B-calls.   
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Figure 19.  Eastern Pacific blue whale detections (solid blue line) and relative sound 
levels for 16-17 Hz from spectra derived from Figure 18 for site G.   
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Figure 20.  Fin whale detections (solid red line) and relative sound levels for 18-25 
Hz from spectra derived from Figure 18 for site G.   

 
 

For site O, which is in the central North Pacific, the analyst-derived data do not 
match well with the spectral data.  Each data source shows clear seasonal variation that is 
due to the presence of blue and fin whale calls; but for blue whales the spectral data 
peaks follow the analyst-derived detections (Figure 22), while for fin whales they precede 
the analyst-derived detections by up to 3 months (Figure 23).   
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Figure 21.  Long-term spectrogram of 10-50 Hz from site O.  White spaces are 
missing data.  The smears of red show the seasonal contribution of blue 
and fin whales to ambient noise levels.   
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Figure 22.  Eastern Pacific blue whale detections (solid blue line) and relative sound 
levels for 16-18 Hz from spectra derived from Figure 21 for site O.   
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Figure 23.  Fin whale detections (solid red line) and relative sound levels for 15-25 
Hz from spectra derived from Figure 21 for site O.   

 
  
 

Overall, blue whale detections (both western and eastern North Pacific) matched 
the spectra for 18-20 Hz and 16-18 Hz, respectively.  Fin whale detections also showed 
the same general pattern as the spectral data and matched the higher frequencies well, 
although peaks in the spectral data tended to precede those from the analysts.  However, 
during months when only blue whales were detected by analysts and no fin whales (or 
vice versa), there were no discernable differences in the spectral levels of different 
frequency ranges.  This suggests that, in the absence of other confirmation of the 
presence of blue and fin whale vocalizations (for instance, from sources of archived time 
series), these species cannot be reliably discerned from spectra data alone in regions and 
seasons in which the two overlap.  Western Pacific blue whales produce sounds in the 18-
20 Hz range, directly overlapping the “20-Hz” pulse of fin whales, and they do not 
generally produce harmonics (Stafford et al. 2001).  For eastern Pacific blue whales, 
when present, the 3rd harmonic has been successfully used to detect that species even in 
the presence of fin whale “noise” (Burtenshaw et al. 2004).   

Spectral data were available hourly from each of the four sites presented here.  
The known fin and blue whale detections provided by Navy analysts were only available 
monthly.  Many of the differences seen in the time series of these two data sources may 
be due to the averaging of the spectra data into one month bins.  This provides a much 
coarser estimate of blue and fin whale occurrence.  The overlap in frequencies used by 
both species makes it almost impossible to confidently distinguish between the two where 
higher frequency harmonics are not present (as in Burtenshaw et al. 2004).   
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